762 research outputs found

    Tailoring spontaneous infrared emission of HgTe quantum dots with laser-printed plasmonic arrays.

    Get PDF
    Chemically synthesized near-infrared to mid-infrared (IR) colloidal quantum dots (QDs) offer a promising platform for the realization of devices including emitters, detectors, security, and sensor systems. However, at longer wavelengths, the quantum yield of such QDs decreases as the radiative emission rate drops following Fermi's golden rule, while non-radiative recombination channels compete with light emission. Control over the radiative and non-radiative channels of the IR-emitting QDs is crucially important to improve the performance of IR-range devices. Here, we demonstrate strong enhancement of the spontaneous emission rate of near- to mid-IR HgTe QDs coupled to periodically arranged plasmonic nanoantennas, in the form of nanobumps, produced on the surface of glass-supported Au films via ablation-free direct femtosecond laser printing. The enhancement is achieved by simultaneous radiative coupling of the emission that spectrally matches the first-order lattice resonance of the arrays, as well as more efficient photoluminescence excitation provided by coupling of the pump radiation to the local surface plasmon resonances of the isolated nanoantennas. Moreover, coupling of the HgTe QDs to the lattice plasmons reduces the influence of non-radiative decay losses mediated by the formation of polarons formed between QD surface-trapped carriers and the IR absorption bands of dodecanethiol used as a ligand on the QDs, allowing us to improve the shape of the emission spectrum through a reduction in the spectral dip related to this ligand coupling. Considering the ease of the chemical synthesis and processing of the HgTe QDs combined with the scalability of the direct laser fabrication of nanoantennas with tailored plasmonic responses, our results provide an important step towards the design of IR-range devices for various applications

    Thawing of permafrost may disturb historic cattle burial grounds in East Siberia

    Get PDF
    Climate warming in the Arctic may increase the risk of zoonoses due to expansion of vector habitats, improved chances of vector survival during winter, and permafrost degradation. Monitoring of soil temperatures at Siberian cryology control stations since 1970 showed correlations between air temperatures and the depth of permafrost layer that thawed during summer season. Between 1900s and 1980s, the temperature of surface layer of permafrost increased by 2–4°C; and a further increase of 3°C is expected. Frequent outbreaks of anthrax caused death of 1.5 million deer in Russian North between 1897 and 1925. Anthrax among people or cattle has been reported in 29,000 settlements of the Russian North, including more than 200 Yakutia settlements, which are located near the burial grounds of cattle that died from anthrax. Statistically significant positive trends in annual average temperatures were established in 8 out of 17 administrative districts of Yakutia for which sufficient meteorological data were available. At present, it is not known whether further warming of the permafrost will lead to the release of viable anthrax organisms. Nevertheless, we suggest that it would be prudent to undertake careful monitoring of permafrost conditions in all areas where an anthrax outbreak had occurred in the past

    MHD models of Pulsar Wind Nebulae

    Full text link
    Pulsar Wind Nebulae (PWNe) are bubbles or relativistic plasma that form when the pulsar wind is confined by the SNR or the ISM. Recent observations have shown a richness of emission features that has driven a renewed interest in the theoretical modeling of these objects. In recent years a MHD paradigm has been developed, capable of reproducing almost all of the observed properties of PWNe, shedding new light on many old issues. Given that PWNe are perhaps the nearest systems where processes related to relativistic dynamics can be investigated with high accuracy, a reliable model of their behavior is paramount for a correct understanding of high energy astrophysics in general. I will review the present status of MHD models: what are the key ingredients, their successes, and open questions that still need further investigation.Comment: 18 pages, 5 figures, Invited Review, Proceedings of the "ICREA Workshop on The High-Energy Emission from Pulsars and their Systems", Sant Cugat, Spain, April 12-16, 201

    Inaccurate DNA Synthesis in Cell Extracts of Yeast Producing Active Human DNA Polymerase Iota

    Get PDF
    Mammalian Pol ι has an unusual combination of properties: it is stimulated by Mn2+ ions, can bypass some DNA lesions and misincorporates “G” opposite template “T” more frequently than incorporates the correct “A.” We recently proposed a method of detection of Pol ι activity in animal cell extracts, based on primer extension opposite the template T with a high concentration of only two nucleotides, dGTP and dATP (incorporation of “G” versus “A” method of Gening, abbreviated as “misGvA”). We provide unambiguous proof of the “misGvA” approach concept and extend the applicability of the method for the studies of variants of Pol ι in the yeast model system with different cation cofactors. We produced human Pol ι in baker's yeast, which do not have a POLI ortholog. The “misGvA” activity is absent in cell extracts containing an empty vector, or producing catalytically dead Pol ι, or Pol ι lacking exon 2, but is robust in the strain producing wild-type Pol ι or its catalytic core, or protein with the active center L62I mutant. The signature pattern of primer extension products resulting from inaccurate DNA synthesis by extracts of cells producing either Pol ι or human Pol η is different. The DNA sequence of the template is critical for the detection of the infidelity of DNA synthesis attributed to DNA Pol ι. The primer/template and composition of the exogenous DNA precursor pool can be adapted to monitor replication fidelity in cell extracts expressing various error-prone Pols or mutator variants of accurate Pols. Finally, we demonstrate that the mutation rates in yeast strains producing human DNA Pols ι and η are not elevated over the control strain, despite highly inaccurate DNA synthesis by their extracts

    Solution conformation and flexibility of capsular polysaccharides from Neisseria meningitidis and glycoconjugates with the tetanus toxoid protein

    Get PDF
    The structural integrity of meningococcal native, micro-fluidized and activated capsular polysaccharides and their glycoconjugates – in the form most relevant to their potential use as vaccines (dilute solution) - have been investigated with respect to their homogeneity, conformation and flexibility. Sedimentation velocity analysis showed that the polysaccharide size distributions were generally bimodal with some evidence for higher molar mass forms at higher concentration. Weight average molar masses Mw where lower for activated polysaccharides. Conjugation with tetanus toxoid protein however greatly increased the molar mass and polydispersity of the final conjugates. Glycoconjugates had an approximately unimodal log-normal but broad and large molar mass profiles, confirmed by sedimentation equilibrium “SEDFIT MSTAR” analysis. Conformation analysis using HYDFIT (which globally combines sedimentation and viscosity data), “Conformation Zoning” and Wales-van Holde approaches showed a high degree of flexibility – at least as great as the unconjugated polysaccharides, and very different from the tetanus toxoid (TT) protein used for the conjugation. As with the recently published finding for Hib-TT complexes, it is the carbohydrate component that dictates the solution behaviour of these glycoconjugates, although the lower intrinsic viscosities suggest some degree of compaction of the carbohydrate chains around the protein

    Ancient micrometeorites suggestive of an oxygen-rich Archaean upper atmosphere

    No full text
    It is widely accepted that Earth’s early atmosphere contained less than 0.001 per cent of the present-day atmospheric oxygen (O2) level, until the Great Oxidation Event resulted in a major rise in O2 concentration about 2.4 billion years ago1. There are multiple lines of evidence for low O2 concentrations on early Earth, but all previous observations relate to the composition of the lower atmosphere2 in the Archaean era; to date no method has been developed to sample the Archaean upper atmosphere. We have extracted fossil micrometeorites from limestone sedimentary rock that had accumulated slowly 2.7 billion years ago before being preserved in Australia’s Pilbara region. We propose that these micrometeorites formed when sand-sized particles entered Earth’s atmosphere and melted at altitudes of about 75 to 90 kilometres (given an atmospheric density similar to that of today3). Here we show that the FeNi metal in the resulting cosmic spherules was oxidized while molten, and quench-crystallized to form spheres of interlocking dendritic crystals primarily of magnetite (Fe3O4), with wüstite (FeO)+metal preserved in a few particles. Our model of atmospheric micrometeorite oxidation suggests that Archaean upper-atmosphere oxygen concentrations may have been close to those of the present-day Earth, and that the ratio of oxygen to carbon monoxide was sufficiently high to prevent noticeable inhibition of oxidation by carbon monoxide. The anomalous sulfur isotope (Δ33S) signature of pyrite (FeS2) in seafloor sediments from this period, which requires an anoxic surface environment4, implies that there may have been minimal mixing between the upper and lower atmosphere during the Archaean

    Astrobiological Complexity with Probabilistic Cellular Automata

    Full text link
    Search for extraterrestrial life and intelligence constitutes one of the major endeavors in science, but has yet been quantitatively modeled only rarely and in a cursory and superficial fashion. We argue that probabilistic cellular automata (PCA) represent the best quantitative framework for modeling astrobiological history of the Milky Way and its Galactic Habitable Zone. The relevant astrobiological parameters are to be modeled as the elements of the input probability matrix for the PCA kernel. With the underlying simplicity of the cellular automata constructs, this approach enables a quick analysis of large and ambiguous input parameters' space. We perform a simple clustering analysis of typical astrobiological histories and discuss the relevant boundary conditions of practical importance for planning and guiding actual empirical astrobiological and SETI projects. In addition to showing how the present framework is adaptable to more complex situations and updated observational databases from current and near-future space missions, we demonstrate how numerical results could offer a cautious rationale for continuation of practical SETI searches.Comment: 37 pages, 11 figures, 2 tables; added journal reference belo

    Hydrodynamic properties of cyclodextrin molecules in dilute solutions

    Get PDF
    Three well-known representatives of the cyclodextrin family were completely characterized by molecular hydrodynamics methods in three different solvents. For the first time the possibility of an estimation of velocity sedimentation coefficients s between 0.15 and 0.5 S by the numerical solution of the Lamm equation is shown. Comparison of the experimental hydrodynamic characteristics of the cyclodextrins with theoretical calculations for toroidal molecules allows an estimation of the thickness of the solvent layers on the surface of cyclodextrin molecules

    Quality control and beam test of GEM detectors for future upgrades of the CMS muon high rate region at the LHC

    Get PDF
    Gas Electron Multipliers (GEM) are a proven position sensitive gas detector technology which nowadays is becoming more widely used in High Energy Physics. GEMs offer an excellent spatial resolution and a high particle rate capability, with a close to 100% detection efficiency. In view of the high luminosity phase of the CERN Large Hadron Collider, these aforementioned features make GEMs suitable candidates for the future upgrades of the Compact Muon Solenoid (CMS) detector. In particular, the CMS GEM Collaboration proposes to cover the high-eta region of the muon system with large-area triple-GEM detectors, which have the ability to provide robust and redundant tracking and triggering functions. In this contribution, after a general introduction and overview of the project, the construction of full-size trapezoidal triple-GEM prototypes will be described in more detail. The procedures for the quality control of the GEM foils, including gain uniformity measurements with an x-ray source will be presented. In the past few years, several CMS triple-GEM prototype detectors were operated with test beams at the CERN SPS. The results of these test beam campaigns will be summarised
    corecore